There is various kind of feeding network of an array antenna. Feed network depend on antenna type and geometry. Feed network for microwave applications is a major design concern in terms of complexity and size.
he Quad Flat No-lead (QFN) package is a CSP (plastic encapsulated package) with a copper lead frame substrate. QFN type package is one of the most cutting-edge IC packaging technologies in the electronics. The QFN is a leadless package where electrical contact to the PCB is made by soldering the leads on the bottom surface of the package to the PCB, instead of the conventional formed perimeter gull wing leads. The QFN-type package is known for its small size, cost-effectiveness and good production yields. QFN also possess certain mechanical advantages for high-speed circuits including improved co-planarity and heat dissipation. The QFN has pins on 4 edges of the bottom surface of the package. The QFN can have either a square or rectangle body as well as symmetric or asymmetric terminal patterns. The QFN was introduced to replace the gull wing lead Quad Flat Package (QFP) because the component leads are embedded in the plastic and cannot be bent during handling to insure consistent ...
RFID stands for Radio-Frequency Identification. The RFID device provides a unique identifier for that object and just as a bar code or magnetic strip the RFID device must be scanned to retrieve the identifying information. More Detail: Microstrip and Printed Antenna Design
The answer to this question depends to a great extent on the particular antenna problem that is to be analyzed. There are various antenna simulation tools based on different numerical techniques. Software for antenna design can be selected based on antenna type and size. Choosing the right technique for solving an antenna problem is important, as choosing the wrong one can either result in incorrect results, or results which take excessively long to compute. Several key EM simulation technologies have emerged over recent years. Out of these, simulation technique the Method of Moments (MoM), Finite Element (FEM) and Finite Difference Time Domain (FDTD) solutions are used almost in all commercial software like Momentum, HFSS, CST, Sonnet, EMPro etc. Although in principal these technologies could be used to solve the same problems there are often good practical reasons why one particular simulator is better suited to solving a particular problem type. There are many considerations...
Comments
Post a Comment